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The effect of thermal vibrations on the intensity of the Laue-Bragg reflection is discussed using the 
dynamical theory of X-ray reflection. The temperature factor for a perfect non-absorbing crystal 
is shown to be of the form exp ( - M )  for intensity, unlike the value of exp ( - 2 M )  for a mosaic 
crystal. The possibility of applying this for finding out the degree of perfection of a crystal is dis- 
cussed. 

1. Introduct ion  

In  s tudying the in tens i ty  of X-ray  reflection from 
perfect crystals, two theories are used- - the  k inemat ica l  
theory applicable to th in  and mosaic crystals and the 
dynamica l  theory, which holds good for thick perfect 
crystals. In  the former theory, the effects of the 
dynamica l  interact ion of p r imary  and diffracted waves 
and  of mult iple  scattering are neglected, whereas in 
the dynamica l  theory of Darwin and in the more 
general theories of Ewald  & Laue, these effects are 
taken into accolmt. Though Darwin & Ewald  have 
approached the problem in different ways, their  
theories lead essentially to the same result (Rama- 
chandran,  1948). Reviews of these theories are avail- 

able in the books by James  (1954) and Zachariasen 
(1945). 

All these theories are s tr ict ly val id  for an ideal 
static lattice where the atoms are at rest, whereas in 
the actual  case, the atoms are not at  rest, bu t  are 
undergoing thermal  oscillations. The effect due to 
these oscillations on the in tens i ty  of X-ray  reflection 
has been studied, chiefly by  Debye, Faxgn, Waller,  
Born, Laval,  using the kinemat ical  theory of X-ray  
reflection. (For a review article, see Born, 1942; also 
Slater, 1958). The main  effect of these oscillations of 
the atoms on the in tens i ty  of the Laue--Bragg scatter- 
ing is to reduce it by a fac tor - - the  Debye-Wal le r  
factor, which is exp ( - 2 M )  for a mosaic crystal.  
However, the effect of thermal  vibrat ions on the  
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in tens i ty  of Bragg reflection in a perfect crystal  does 
not seem to have been worked out. For example,  both 
Born in his review on 'Crystal  dynamics  and X-ray  
scattering'  (1942, p. 328) and  James  in dealing with 
thermal  v ibra t ion in his book (1954, p. 210) state tha t  
the extension of Ewald 's  dynamica l  theory of scat- 
tering to the v ibra t ing  latt ice is an  impor tan t  problem, 
but  do not  refer to any  earlier work. The author  
therefore took up this problem and the results are 
presented below. I t  is found tha t  the tempera ture  
factor for a perfect non-absorbing crystal  is of the form 
exp ( - M )  for intensi ty,  unlike the value exp ( - 2 M )  
for a mosaic crystal.  The author  has learned from 
Prof. Ewald  tha t  this  result  has been stated by  
Waller  (1926, 1927). However, Waller  has not  pub- 
lished the details, a l though he mentions tha t  he has 
made an approximate  solution of the problem on the 
basis of Ewald 's  theory. The derivat ion given below 
appears  to be quite exact  and is in fact val id  even 
for a crystal  t raversed by  a single acoustic wave. 
Only the case of a non-absorbing crystal  is discussed 
in this  paper, but  it is proposed to extend this s tudy  
to the case of an absorbing crystal  also. 

Throughout  this  paper  the notat ion used is tha t  of 
Zachariasen (1945) (with some minor modifications), 
on whose t rea tment  the calculations are based. 

2. S ta t i c  and dynamic  dielectric  constants  

As usual  we m a y  develop the dielectric constant,  s of 
the crystal,  which is a three-dimensional ly  periodic 
quant i ty ,  as a Fourier  series. Fur ther  this  dielectric 
constant  s at  any  point  r is related to the electron 
densi ty  funct ion @ at tha t  point  by  the relation 
(James, 1954) 

s(r) = 1 -(C'/z~mvg)@(r), (1) 

where v is the frequency of the incident  X-rays,  and  
it  is assumed tha t  v is far away  from any  na tura l  
absorpt ion frequency of the scattering system. Be- 
cause of the fact tha t  the atoms are v ibra t ing @ and s 
will not be constant  and  in the actual  crystal, one has 
to consider the t ime dependent  dynamic  electron 
densi ty  @' and  dielectric constant  e'. The atomic dis- 
placements  in a ' dynamic  latt ice '  can be analyzed in 
terms of a number  of plane waves - - the  'acoustic 
waves'  of vary ing  frequency and ampli tude.  Before 
considering this actual  case, we m a y  first consider a 
simple case when the displacement  of atoms can be 
expressed in terms of a single acoustic wave and later  
generalize this result  to a superposition of such waves. 

Let the displacement  vector due to the acoustic 
wave at any  point  r be u, given by 

u = av cos 27~(vvt- gv. r -  ~v) , (2) 

where av, ~,v, vv and by are the ampli tude,  wave 
vector, f requency and phase of the acoustic wave. 
(The index p is pu t  in to facil i tate generalization later.) 
An atom, which would have been at the position r 

in the static lattice, is actual ly  at  r +  u at  t ime t in 
the dynamic  lattice. This indicates tha t  the dynamic  
charge densi ty  funct ion @' at  t ime t is related to the 
static charge densi ty  @ by  the equat ion 

0 ' ( r + u ) = 0 ( r  ) or @ ' ( r ) = 0 ( r - u  ) . (3) 

In  writ ing equat ion (3) the approximat ion  tha t  is 
made  is to neglect any  distort ion or any  mutua l  
penetra t ion of electronic shells tha t  m a y  be produced 
by  the vibrat ion,  which is a reasonable assumption 
for acoustic frequencies.* Thus, if we use ~ '(r)  and 
yJ(r) to describe any  physical  proper ty  of the crystal  
in the dynamic  and  static conditions respectively, and 
i f  ~v at any point r could be related to the electron density 
at that point (as for instance equation (1)), then  we have 

~ ' ( r )  = ~ v ( r -  u ) .  (4) 
Thus 

d ( r ) = e ( r - - u ) =  l--(e2/zlmv2)@(r--u) . (5) 

Since for a static crystal  

1 
0 ( r - u )  = ~ F H e x p [ - - 2 ~ i S H . ( r - - u ) ] .  (6) 

Equat ion  (5) takes the form 

1 .~ ,FHexp[--2zdBH(r--u)] .  (7) d( r )  = 1--(e2/z~mv2)-~ 
/ /  

FH is the structure ampl i tude  corresponding to the  
static latt ice and BH is the reciprocal lat t ice vector 
for the reflection H(hkl). As it  is more convenient  to 
work with 1/s'(r) we shall  obtain an expansion for 
that .  If  ~'  and c~ are the dynamic  and static polari- 
zabilit ies per uni t  volume, then, since a ' ,  a < 1, we 
have  

/ , 1 (e ( r ) )=  1/(1 +4z~a'(r)) = 1 - 4z~a'(r) 
= 1 -- 4~a ( r - -  u) . (8) 

Pu t t ing  4 ~ a ' ( r ) = y / ( r ) ,  4 ~ a ( r ) = ~ ( r ) ,  the  dielectric 
constant  becomes 

d( r )  = 1 + y / ( r ) ,  
where 

v / ' ( r ) = ~ ( r - - u ) = Z ~ V H  exp [ - - 2 : d B H . ( r - - u ) ]  (9) 

and yJH is the Fourier  component  re levant  to the 
static lattice. 

Further ,  

exp [2ziBH. u] = exp [iZyp cos q;v] = Jo(ZHv) 
+2.Y, inJ~(Zgv) COS n~vv, (10) 

n 

where 
ZHp=27~BH.ap, qzv=2z~(vv t -gp . r -  (hp) (10a) 

and J0, Jn  are Bessel functions of order 0 and n. 
Neglecting higher order terms than  the first, we get 

* A further approximation, almost certainly of negligibly 
small effect, is the expansion or compression of the volume 
element implicit in equation (3). 
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exp [2~iBH. u] = Jo (ZHp) + 2iJ1 (ZHp) cos ~v 
= T~+iC~T~H (exp (igv) +exp ( - igv) ) ,  

where (10b) 
TP=Jo(ZHp),  CP=JI(ZHp)/Jo(ZHp).  (10c) 

Putting (10b) in equation (9), y/(r) becomes 

y/(r) = ~ VH exp [-- 2~ iBg .  r] [T p + iTPC~ 
H 

x (exp (i~vp)+exp ( - i f p ) ) ]  

- - ~ V ~  exp [--2:~iBH.r] +~,~V~ [exp (i~vp) 
H H 

+exp (-i~Vp)] exp [--2:~iBH.r] , (11) 
where 

' p ' p  • 
V11 =V,)HT[I, V,)H = zvHTPH Cp. (I la) 

From (lla)  we get for the forward scattering for 
which H =  0, B = 0, To = 1 that 

! 

V o = V o  . ( l lb)  

3. D i s p e r s i o n  re la t ions  

The field vectors (D', the displacement vector, H',  
the magnetic vector, E', the electric vector) must 
everywhere satisfy Maxwell's equation for an electro- 
magnetic field in an insulating medium. 

Curl H '  = (l/c) (~D'/~t). (12a) 

Curl E' } 
Curl D'/s '  = - - ( l / c )  (~H'/Bt). (12b) 
Curl (1 - y/)D' 

In order to get a solution, in the case of the static 
crystal, D and H are expanded in terms of plane 
waves as 

H'  = exp [2girt] ~ H~ exp [ -  2~i~H. r] + exp [2girt] 
H 

× ~ HH p exp [--2~i  ~g . r ]  [exp (i~v)+exp (--i~p)].  
H 

(16) 

Note that  ~Vp contains both time and position coor- 
dinates. 

In order that  coherence conditions may be satisfied, 
each frequency component has to be dealt with 
separately. Choosing only the components involving 
the frequency v in D', H'  and (1 -v ' )D ' ,  we get 

D'---exp [2~ivt] ~ D~ exp [ - -2~i~H.r ]  (17} 
H 

H ' = e x p  [2~ivt] Z H~ exp [ - - 2 ~ i ~ H . r ] .  (18) 
H 

(1 - v ' ) D '  = exp [2~ivt] [ ~  D~ exp [ -  27d ~g . r ]  
H 

--~_,~ vj~DL exp [ - 2 ~ i ( ~ z +  BM).r]] (19a) 
M L 

(we neglect quantities of still smaller order in v/D'). 
Since ~L-~-BM=~L+M, and as the sums extend to 

infinity, we may put L + M = H  and sum over H 
instead of over M, when (19a) takes the form 

(1 - v ' ) D '  = exp [2~ivt] [ ~  D~ exp [ -  2~i ~H. r] 
H 

' D' - - ~ Z V H - z  L exp [ - -2~i~H.r]]  (19b) 
H Z 

Putting the equations (17), (18) and (19b) in (12a) and 
(12b) the dispersion relations are at once obtained as 

p t 2 ' 2 t .,~, [VB-L(~B.D'z)~H--V2B-LflHDL]= (k~ - flB)DH (20) 
L 

upon which is to be based the study of interference 
phenomena. Here ko= u/c where c is the velocity of 
light. 

D--exp [2girt] Z DH exp [ - -2~i~H.r ]  . (13) 
H 

H = e x p  [2~ivt] Z HH exp [--2~i  ~H.r] . (14) 
H 

This expansion is guessed at, knowing from Ewald's 
theory that  the wave field consists of plane waves, 
the wave vectors of any two of which differ by a 
reciprocal lattice vector. In order to guess the correct 
expansions for D' and H'  pertinent to the dynamic 
case, we remember the result of the Fax4n-Waller 
theory that  in the diffracted beam, in addition to the 
unmodified wave of frequency v and wave vector ~H, 
modified waves of frequency v __+ up and wave vectors 
~H"~gp a r e  produced. This fact and the form of 
equation (11) suggest that  D' and H'  may be written 
as follows : 

D' -- exp [2sivt] ~ D~ exp [ - 2~i DH. r] + exp [2sivt] 
H 

x ~ D~  exp [ - 2 ~ i ~ H .  r] [exp (i~v)+exp ( - i ~ v ) ] .  
H 

(15) 

4. Intens i ty  of re f lec t ion  f r o m  a perfect  c r y s t a l  
t r a v e r s e d  by an acous t i c  w a v e  

In order to see clearly the effect of atomic oscillations 
on the intensity of X-ray reflection, consider the 
simple case of a finite bounded crystal of thickness to, 
having plane boundaries. Assume that  only one re- 
ciprocal lattice point BH lies near the surface of the 
sphere of reflection. We shall consider specifically an 
internal reflection (the 'Laue' case}, Employing ~rgu- 
ments similar to those used by Zachariasen (1945) in 
deriving his equations 3.107 to 3.130, we arrive at  
the result that  

i t  / T t e  r t p t t m~o = Ixxx2(cl--C2)/(xz--xJ.)12 (21) 

instead of equation 3.130 of Zachariasen. I~ and I0 e 
are the intensities of the diffracted and incident beams, 

t p 
xl, x~ are the amplitude ratios given by 

t 

xl, } = [_  z _+ (q' + z2)½]/V: n. (22) 
' X 2  
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! • v t t 

Cl = exp [ - 2 ~  (ko6ol/Yo)to], c2 = exp [ - 2 ~ i  (k 0 6o2/7o)to] 
(23) 

with the following abbreviat ions 

601 } = ½ [vd0-z + (q' +z2)½]. (24) 
~0~ 

z=½(1-b)v2o+½baE, q'=b~p'B~v~ (25) 

b =yo/yg  (26) 

(ratio of the direction cosines of the incident and 
diffracted beams) 

COy= (1/k~)(B~ + 2k~). BH) (27) 
e e k0 = u0/20 

u~ = propagat ion direction of incident wave outside the 
crystal,  2o=wave  length of X-rays  in vacuum. After 
some manipula t ion equat ion (21) can be reduced to 
the  form 

' I I ' e  n/-~o = b2[ Y)~I ~ exp [ - #0 t] 
× [sin 2 (av ')+sinh 2 (aw')J/lq'+z~'l , (28) 

where/z0 = linear absorpt ion coefficient and 

v' + iw' = (q' + z~)½, a = z~koto/yo, t = ½ (1/yo + 1/yH)tO . 
(29) 

t v ,  When there is no absorpt ion yJ~= y~11, 
! 

~ = I ~ H I  ~, ~Zo=0, w'----0, 
v' ' ~ z~)½ = (bl~v~l + 

and in terms of 
A'  =al/(fbl)Klw~l (30) 

y' = z/[i/(Ibl)KIv;'zl] 
= ½(1-b)veo+½bo,~/[I/(Ibl)KIv;'~l] (31) 

the  power rat io takes the simple form 

P__~ _ , ,~ 
Po -(1/b)(I11/Io ) = s i n  e [A'(1 +y'2)½]/(1 +y '~ ) .  (32) 

Here  K is the polarization factor, being [cos 2 01 for 
paral lel  polarization and 1 for normal  polarization. 
"]?he in tegra ted  in tens i ty  in the y '  scale for a thick 
c rys ta l  comes out (just as in the static case) as 

R ~  = I P'~'-~o aY' = zt/2 (33) 

as P'n/Po in the dynamic  case and PH/Po in the stat ic 
ease are of the same form (see Zachariasen's  equations 
3.140 to 3.152). Hence the in tegra ted  in tensi ty  in the 
:glancing angle scale for a dynamic  crystal  is 

~'~=RU~(dO/dy')=x~[v2"n[g/(2~([bl) sin 20~) (34) 

a n d  for a static crystal,  the in tegrated in tens i ty  in the 
.glancing angle scale is 

511= RU~(dO/dy) = z~[y~g[K/(2~(lbl) sin 20~) .  (35) 

Hence the t empera ture  factor comes out  to be 

~ / ~ B  = I ~1 / I  ~B[ = T~ (36) 
using ( l la ) .  

Equa t ion  (36) holds also for a surface reflection 
(the 'Bragg'  case). Employing similar arguments  as 
for the 'Laue '  case, we get 

I '  I T ' e  ' ' ' ' ' ' ' ' ~/~o = [xlx~(cl-c2)/(c2x2-ClXx) (37) 

from which the in tegrated in tensi ty  for a thick crystal 
comes out as 

R ~ = 7 ~ .  (38) 

Hence the in tens i ty  in the glancing angle scale is 

~'n=R~(dO/dy')=~lV2'HlK/[1/(lbl) sin 20z] (39) 

which at  once leads to the expression for the tempera-  
ture  factor as 

v v 

Q~/~11 = IWAI/I~HI = T~ 

exact ly  as for an internal  reflection. 

5. T e m p e r a t u r e  f ac to r  for  a pe r f ec t  c r y s t a l  

We m a y  now consider the case of a crystal  in thermal  
vibration.  The displacements of the a toms may  then 
be analyzed in terms of a number  of waves and the 
results of the previous section have only to be summed 
over all p. Ins tead  of equat ion (2), we have 

u = . S  a v  cos 2~r (vpt- g v .  r - -  (~v) ( 4 0 )  
P 

when 

exp 2~riBH.U = H exp [iZH COS qgp] (41) 
P 

where 

= H [Jo(ZHv) +2iJ1 (ZHv) COS ~Ov] (41a) 
P 

= 1I Jo(ZHp)q-2i Z , [ H  Jo(ZHp)] 
p s p 

× (J1 (ZH~)/Jo (ZH~) cos ~8 

= TH + 2i . l  TH C~ cos ~s 
8 

(to a first approximation)  

(41b) 

TH = 11 Jo (ZHv), C~ = J1 (ZHs)/Jo (ZHs) • (41C) 
P 

Put t ing  equations (40) and (41b) instead of equations 
(2) and (10b) in equat ion (9), we have 

v2' = Z,  v2HTH exp [ - 2 7 d B H . r ] + i  Z . S  V2HTHC ~ 
1 t  11 s 

x exp [--2~riBH. r]  [exp ( i~s )+exp  (--i~s)] 
p 

= • ~v11 exp [ - - 2 ~ i B H . r ]  + ~  ~v~ 
H H s 

x exp [ - - 2 7 d B H . r ]  [exp ( i~8)+exp (--i~08)]. 
(42) 

Proceeding as before we obtain 

<Q~/~ . )=  <TH>. (43) 
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The bar and ( } indicate that  equation (43) is not only 
to be averaged over time, but an appropriate statistical 
weight factor has also to be used for each wave 
depending on its frequency. Carrying out the aver- 
aging, we find (Ramachandran, 1949) 

(TH} ---- ( H  Jo(ZHp)} = exp (--M) (43a) 
p 

where, with its usual significance, 

M =  (8~2/3) (sin 20/2~)u ~. (44) 

Thus we arrive at the result that  the integrated 
intensity of a non-absorbing perfect dynamic crystal 
is less than the integrated intensity of a non-absorbing 
perfect static crystal by a factor exp ( - M ) .  I t  is 
instructive to see how this reduction is brought about. 
Taking for example the 'Bragg' case, there is total 
reflection over a range - 1 < y' < 1 (just as in the static 
case where the range of total reflection is - 1 < y < 1). 
In the glancing angle scale, the range of total reflec- 
tion is from 

(--K[v/Bl)/(I/(lb[)sin2OB) to (+ Kl~'BI)/(I/(IbI)sin2OB). 

Thus we see that  the effect of thermal oscillation is 
not to destroy the property of total reflection over a 
finite range of angles, but only to decrease the range 
over which the total reflection occurs by a factor 
exp ( - M )  thereby causing the decrease in the value 
of integrated intensity. Thus the effect of thermal 
oscillations is to sharpen the reflection curve in the 
case of perfect crystals. This may not be true however 
in the case of absorbing crystals. (For a mosaic crystal, 
we know that  the thermal vibration does not affect 
the sharpness of reflection.) For the 'Laue' case, and 
perfect crystal, the peak value of P'~/Po (in the P'H/Po 
versus y' curve) is still ½ at y' =0  just as in the static 
case, but the half-width at half-maximum is given by 

wv,=l  or w0= IKyfB[/(((lbl) sin 20B) . 

This again shows that  effect of thermal vibration is 
to sharpen the diffraction pattern of a perfect crystal. 

Thus, finally, we get the interesting result that  for 
a perfect non-absorbing crystal the temperature factor 
correcting the intensity is only exp ( - M )  and not 
exp ( - 2 M )  as in the mosaic crystals. This is because 
of the fact that  while there is a tendency to reduce 
the intensity by a factor exp ( - 2 M )  when the atoms 
are oscillating (considered from the kinematical view 
point), there is an opposing tendency to increase the 
intensity due to a decrease in primary extinction. 
These together so balance as to give a reduction of 
intensity for a perfect non-absorbing crystal only by 
a factor exp ( - M ) .  Thus we see that  the effect of 
temperature vibration is to change the structure 

amplitude F of the static crystal to F exp ( - M ) .  
Since the integrated intensity of a perfect crystal is 
proportional to the first power of the structure factor, 
the temperature factor correcting the intensity comes 
out to be only exp ( - M ) .  For an ideally mosaic 
crystal where the intensity is proportional to F 2 the 
temperature factor becomes exp ( - 2 M ) .  I t  is possible 
also to envisage intermediate types of crystals where 
the temperature factor may be of the form exp ( - P M )  
where P may have a value between 1 and 2. This 
behaviour is analogous to what is obtained in the case 
of the polarization factor (K for perfect crystal and 
K 2 for mosaic crystal). This variation of the polariza- 
tion factor has been made use of for assessing the 
degree of perfection of crystals (l~amaseshan & Rama- 
chandran, 1954; Chandrasekharan, 1959). I t  appears, 
therefore, that  the temperature factor also could be 
used in a similar way to determine the degree of per- 
fection of crystals by measuring the integrated in- 
tensity at two different temperatures. The experimem 
tal difficulty is however slightly greater in this case 
and also one cannot be certain that  increase of tem- 
perature by itself does not lead to an imperfection. 
In fact, from light scattering studies, such an increase 
in imperfection has been found to occur in the case 
of quartz (Humphreys-Owen, 1956). 

Although the theory has been developed essentially 
for X-ray diffraction, it is obvious that  the results can 
be carried over to the diffraction of electrons and 
neutrons by perfect crystals, as the dynamical theories 
of these phenomena are quite similar to that  of X-ray 
diffraction. 

The author is indebted to Prof. G. N. Ramachan- 
dran for the invaluable discussions he had with him 
and is grateful for the keen interest he took in this 
study. His thanks are also due to the University 
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