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The Temperature Factor in the Dynamical Theory of X-ray Interference
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The effect of thermal vibrations on the intensity of the Laue-Bragg reflection is discussed using the
dynamical theory of X-ray reflection. The temperature factor for a perfect non-absorbing crystal
is shown to be of the form exp (— ) for intensity, unlike the value of exp (—2M) for a mosaic
crystal. The possibility of applying this for finding out the degree of perfection of a crystal is dis-

cussed.

1. Introduction

In studying the intensity of X-ray reflection from
perfect crystals, two theories are used—the kinematical
theory applicable to thin and mosaic crystals and the
dynamical theory, which holds good for thick perfect
crystals. In the former theory, the effects of the
dynamical interaction of primary and diffracted waves
and of multiple scattering are neglected, whereas in
the dynamical theory of Darwin and in the more
general theories of Ewald & Laue, these effects are
taken into account. Though Darwin & Ewald have
approached the problem in different ways, their
theories lead essentially to the same result (Rama-
chandran, 1948). Reviews of these theories are avail-

able in the books by James (1954) and Zachariasen
(1945).

All these theories are strictly valid for an ideal
static lattice where the atoms are at rest, whereas in
the actual case, the atoms are not at rest, but are
undergoing thermal oscillations. The effect due to
these oscillations on the intensity of X.ray reflection
has been studied, chiefly by Debye, Faxén, Waller,
Born, Laval, using the kinematical theory of X-ray
reflection. (For a review article, see Born, 1942; also
Slater, 1958). The main effect of these oscillations of
the atoms on the intensity of the Laue-Bragg scatter-
ing is to reduce it by a factor—the Debye—Waller
factor, which is exp (—2M) for a mosaic erystal.
However, the effect of thermal vibrations on the
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intensity of Bragg reflection in a perfect crystal does
not seem to have been worked out. For example, both
Born in his review on ‘Crystal dynamics and X-ray
scattering’ (1942, p. 328) and James in dealing with
thermal vibration in his book (1954, p. 210) state that
the extension of Ewald’s dynamical theory of scat-
tering to the vibrating lattice is an important problem,
but do not refer to any earlier work. The author
therefore took up this problem and the results are
presented below. It is found that the temperature
factor for a perfect non-absorbing crystal is of the form
exp (— M) for intensity, unlike the value exp (—2M)
for a mosaic crystal. The author has learned from
Prof. Ewald that this result has been stated by
Waller (1926, 1927). However, Waller has not pub-
lished the details, although he mentions that he has
made an approximate solution of the problem on the
basis of Ewald’s theory. The derivation given below
appears to be quite exact and is in fact valid even
for a crystal traversed by a single acoustic wave.
Only the case of a non-absorbing crystal is discussed
in this paper, but it is proposed to extend this study
to the case of an absorbing crystal also.

Throughout this paper the notation used is that of
Zachariasen (1945) (with some minor modifications),
on whose treatment the calculations are based.

2. Static and dynamic dielectric constants

As usual we may develop the dielectric constant, ¢ of
the crystal, which is a three-dimensionally periodic
quantity, as a Fourier series. Further this dielectric
constant ¢ at any point r is related to the electron
density function g at that point by the relation
(James, 1954)

&(r)=1—(e*/mmr2)o(r) , (1

where v is the frequency of the incident X-rays, and
it is assumed that » is far away from any natural
absorption frequency of the scattering system. Be-
cause of the fact that the atoms are vibrating ¢ and &
will not be constant and in the actual crystal, one has
to consider the time dependent dynamic electron
density o’ and dielectric constant ¢’. The atomic dis-
placements in a ‘dynamic lattice’ can be analyzed in
terms of a number of plane waves—the ‘acoustic
waves’ of varying frequency and amplitude. Before
considering this actual case, we may first consider a
simple case when the displacement of atoms can be
expressed in terms of a single acoustic wave and later
generalize this result to a superposition of such waves.

Let the displacement vector due to the acoustic
wave at any point r be u, given by

u=2a, cos 2a(¥pl—8p.Tr—0p) , (2)

where a,, g5, vp» and J, are the amplitude, wave
vector, frequency and phase of the acoustic wave.
(The index p is put in to facilitate generalization later.)
An atom, which would have been at the position r
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in the static lattice, is actually at r+u at time ¢ in
the dynamic lattice. This indicates that the dynamic
charge density function ¢’ at time # is related to the
static charge density ¢ by the equation

' (r4+u)=p(r) or p'(r)=p(r—u). (3)

In writing equation (3) the approximation that is
made is to neglect any distortion or any mutual
penetration of electronic shells that may be produced
by the vibration, which is a reasonable assumption
for acoustic frequencies.* Thus, if we use y’(r) and
(r) to describe any physical property of the crystal
in the dynamic and static conditions respectively, and
if p at any point T could be related to the electron density
at that point (as for instance equation (1)), then we have

y'(r)=y(r—u). (4)
Thus }
g (r)=¢e(r—u)=1—(ex/mmr2)o(r —u) . (5)

Since for a static crystal

g(r—u):Tll%‘FH exp [—2miBy.(r—u)]. (6)
Equation (5) takes the form
g'(r) = 1—(e2/mma2) I—]}%FH exp[—2aiBu(r—u)]. (7)

Fy is the structure amplitude corresponding to the
static lattice and By is the reciprocal lattice vector
for the reflection H(kkI). As it is more convenient to
work with 1/¢’(r) we shall obtain an expansion for
that. If " and « are the dynamic and static polari-
zabilities per unit volume, then, since o', x < 1, we
have .

1/{(e'(r))=1/(1+4na’(r)) =1 — 47’ (r)
=1—4nx(r—u). (8)
Putting 4ma’(r)=v'(r), 4nx(r)=y(r), the dielectric
constant becomes

g(r)=1+y'(r),
where

q;’(r):w(r—u):%‘zpy exp [—2miBu.(r—u)] (9)

and yy is the Fourier component relevant to the
static lattice.
Further,

exp [2miBy.ul=exp [tZup cos gp]=Jo(Znp)
+2 3% (Znp) cos ngpyp , (10)

where
ZHp=27[BH.ap, (pp=27t(11pt-gp. r— (Sp) (].Od)

and Jo, J, are Bessel functions of order 0 and =.
Neglecting higher order terms than the first, we get

* A further approximation, almost certainly of negligibly
small effect, is the expansion or compression of the volume
element implicit in equation (3).
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exp [27‘61BH . u] =Jy (ZHp) +21J, (Zyp) COS @p
=T5+:C%T (exp (tpp) +exp (—igp)),

(105)

(10¢)

where
Th=Jdo(Zup), Cog=J1(Zup)|Jo(Zuyp) .

Putting (100) in equation (9), p’(r) becomes

' (r)=X yuexp [ 2niBy.r][Th +iT%C%
" . .
X (exp (C@p) +exp (—i@p))]
=2 yg exp [—27iBx.r] +2 vif [exp (ipy)
H
+exp (—igp)| exp [—27iBy.1], (11)

where
va=yuTh, pf=ipaTHCE . (11a)
From (1la) we get for the forward scattering for
which H=0, B=0, T,=1 that

gu{,:q)o . (110)

3. Dispersion relations

The field vectors (D', the displacement vector, H’,
the magnetic vector, E’, the electric vector) must
everywhere satisfy Maxwell’s equation for an electro-
magnetic field in an insulating medium.

Curl H’ = (ljc) (¢D’/o8). (12a)
Curl E’
Curl D/¢’ = —(1/c) (¢H'/0t) . (12b)

Curl (1-9")D’

In order to get a solution, in the case of the static
crystal, D and H are expanded in terms of plane
waves as

D=exp [27ivt] X Dy exp [—2niPu.r]. (13)
3]

H=exp [2mivt] X Huexp [—27iBru.r]. (14)
H

This expansion is guessed at, knowing from Ewald’s
theory that the wave field consists of plane waves,
the wave vectors of any two of which differ by a
reciprocal lattice vector. In order to guess the correct
expansions for D’ and H’ pertinent to the dynamic
case, we remember the result of the Faxén—Waller
theory that in the diffracted beam, in addition to the
unmodified wave of frequency » and wave vector Pz,
modified waves of frequency » + v, and wave vectors
Pu+ g, are produced. This fact and the form of
equation (11) suggest that D’ and H' may be written
as follows:

D’ =exp [27ivt] X Dy exp [—27iPu. 1]+ exp [27ivt]
H

x ;‘: Dy} exp [—27iPu. 1] [exp (ipp)+exp (—ipp)].
(15)

H'=exp [27ivt] 3 Hy exp [—2xiPr.r]+exp [27ivt]
I

x S Hf exp[—27iBu.r] [exp (ipp) +exp (—igp)].
H

(16)

Note that @, contains both time and position coor-
dinates.

In order that coherence conditions may be satisfied,
each frequency component has to be dealt with
separately. Choosing only the components involving
the frequency » in D', H' and (1—9y")D’, we get

D’'=exp [27irt] X Dgexp [—2miPu.r]  (17)
H

H'=exp [2nivt] S Hy exp [ 27iPr.r]. (18)
H

(1—y')D’'=exp [27ivt] [ X Dy exp [ — 27 Prr. 1]
H
—ff"l)x"lD’L exp [—27i(BL+By).r]] (19a)

(we neglect quantities of still smaller order in y'D’).
Since Pr.+ By =Priy, and as the sums extend to

infinity, we may put L+M=H and sum over H

instead of over M, when (19a) takes the form

(1—9")D'=exp [27i7t] [ X Dy exp[—2n:Py.1]
"

-2 2 yy 1 Dyexp[—2miPu.1]]. (19D)
F L

Putting the equations (17), (18) and (195) in (12a) and

(126) the dispersion relations are at once obtained as

= a-1(Ba-D1)Pa—ya_1fuDL]=(ki— fZ)Dy (20)

upon which is to be based the study of interference
phenomena. Here ko=wv/c where ¢ is the velocity of
light.

4. Intensity of reflection from a perfect crystal
traversed by an acoustic wave

In order to see clearly the effect of atomic oscillations
on the intensity of X-.ray reflection, consider the
simple case of a finite bounded crystal of thickness #,
having plane boundaries. Assume that only one re-
ciprocal lattice point By lies near the surface of the
sphere of reflection. We shall consider specifically an
internal reflection (the ‘Laue’ case). Employing argu-
ments similar to those used by Zachariasen (1945) in
deriving his equations 3-107 to 3-130, we arrive at
the result that

Ty |16 = w125 (c1 — ¢5)/ (5 — 1) 2 @)

instead of equation 3:130 of Zachariasen. Iy and I,
are the intensities of the diffracted and incident beams,
Z;, , are the amplitude ratios given by
2 , ,
=[x @+t 22)

’
‘xZ
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¢1 = exp [ — 27t (koSg1/o)tol, C2=exp[— 27 (ko Bga/vo)to)

(23)
with the following abbreviations
s
62:} =Hwo—zx (g +23)}]. (24)
2=3(1=b)po+ by, ¢ =byryy (25)
b=yo/yn (26)

(ratio of the direction cosines of the incident and
diffracted beams)

om = (1/kg) (By +2Kk§. Br)
=uf/ o

27

u§=rpropagation direction of incident wave outside the
crystal, lo=wave length of X-rays in vacuum. After
some manipulation equation (21) can be reduced to
the form

Ig/15f=b2|ypg% exp [ — uot]

x [sin? (av') +sinh? (aw’)]/|¢’ +22|, (28)

where po=linear absorption coefficient and

v +iw' = (g +22)}, a=mkoto/yo, t=}(1/yo+1/yu)to .
(29)
When there is no absorption ypz =1z,
Vavr=vul? #o=0, w'=0,
V' = (b gl +22)}
and in terms of
A’ =a)/(b])K|ypzl (30)

¥ =2/[V (b)) Klypgl]
= }(1—b)yo+3bocn/[ V(16K |pul] (31)

the power ratio takes the simple form

Pa _

57 = (1/6)(Ia/1") =sin2[4'(1 +y2)E/(1+y?).
0

(32)

Here K is the polarization factor, being [cos 20| for
parallel polarization and 1 for normal polarization.
The integrated intensity in the y’ scale for a thick
crystal comes out (just as in the static case) as
, Py
Ry =\—=dy' =n/2
\5; dy'=m (33)
as Py/Pg in the dynamic case and Py/P, in the static
case are of the same form (see Zachariasen’s equations

3-140 to 3-152). Hence the integrated intensity in the
glancing angle scale for a dynamic crystal is

= Ry (d0/dy’) = 7| ya| K/(2)/([b]) sin 205) (34)

and for a static crystal, the integrated intensity in the
glancing angle scale is

= Ry (d6/dy) = 7yl K/(2Y/(b]) sin 265) . (35)
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Hence the temperature factor comes out to be
enles=|vul/lysl=T% (36)
using (1la).
Equation (36) holds also for a surface reflection
(the ‘Bragg’ case). Employing similar arguments as
for the ‘Laue’ case, we get

In/lf= 2)/(6s3 —c127) 37)

from which the integrated intensity for a thick crystal
comes out as

|23 (01—

RYy=m. (38)
Hence the intensity in the glancing angle scale is
=Ry (d0/dy’) = n|pu| K/[V(1b]) sin 265]  (39)

which at once leads to the expression for the tempera-
ture factor as

orler=val/lyel=

exactly as for an internal reflection.

5. Temperature factor for a perfect crystal

We may now consider the case of a crystal in thermal
vibration. The displacements of the atoms may then
be analyzed in terms of a number of waves and the
results of the previous section have only to be summed
over all p. Instead of equation (2), we have

u=a,cos2n(vpt—8p.r—dp) (40)
?
when

exp 2niBy.u = [T exp [iZy cos ¢p) 41)
2

= 11 [Jo(Zrp) +2iJ1 (Zap) cos pp] (41a)

= HJO(ZHp)+2/LZ[H JO(ZHP)]
X (J1(Zns) /Jo(ZHs ) cos s

=Ty+2t ZTuC% cos s (415)
s
(to a first approximation)
where
:xH =J1 (ZHs)/JO (ZHs) . (4)e)

Th=IJo(Zuyp),
»

Putting equations (40) and (410) instead of equations
(2) and (10b) in equation (9), we have

Y =3 yuThexp [—27iBu.1]+i 3 3 yuTuCy
4 H s
xexp [—27iBu.r] [exp ((ps)+exp (—igs)]
=X ypexp[—2mBu.r]+ 3 3 pg
H H s
x exp [—2niBu.r] [exp (ips)+exp (—igs)] .

(42)
Proceeding as before we obtain

(onlery=(Tuy. (43)
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The bar and ¢ ) indicate that equation (43) is not only
to be averaged over time, but an appropriate statistical
weight factor has also to be used for each wave
depending on its frequency. Carrying out the aver-
aging, we find (Ramachandran, 1949)

(Twy = I Jo(Zup)) = exp (— M) (43a)
4
where, with its usual significance,
M = (872/3) (sin? 6] A2)u. (44)

Thus we arrive at the result that the integrated
intensity of a non-absorbing perfect dynamic crystal
is less than the integrated intensity of a non-absorbing
perfect static crystal by a factor exp (—M). It is
instructive to see how this reduection is brought about.
Taking for example the ‘Bragg’ case, there is total
reflection over a range —1 <y’ <1 (just as in the static
case where the range of total reflection is —1<y<1).
In the glancing angle scale, the range of total reflec-
tion is from

(—Klyal)/(V(1b])sin265) to (+K|pz))/()/([b])sin265).

Thus we see that the effect of thermal oscillation is
not to destroy the property of total reflection over a
finite range of angles, but only to decrease the range
over which the total reflection occurs by a factor
exp (— M) thereby causing the decrease in the value
of integrated intensity. Thus the effect of thermal
oscillations is to sharpen the reflection curve in the
case of perfect crystals. This may not be true however
in the case of absorbing crystals. (For a mosaic crystal,
we know that the thermal vibration does not affect
the sharpness of reflection.) For the ‘Laue’ case, and
perfect crystal, the peak value of Pg/Pq (in the Pg/Pg
versus y' curve) is still § at =0 just as in the static
case, but the half-width at half-maximum is given by

wy=1 or wo=|Kyg|/(}/(b]) sin 265) .

This again shows that effect of thermal vibration is
to sharpen the diffraction pattern of a perfect crystal.

Thus, finally, we get the interesting result that for
a perfect non-absorbing crystal the temperature factor
correcting the intensity is only exp (—M) and not
exp (—2M) as in the mosaic crystals. This is because
of the fact that while there is a tendency to reduce
the intensity by a factor exp (—2M) when the atoms
are oscillating (considered from the kinematical view
point), there is an opposing tendency to increase the
intensity due to a decrease in primary extinction.
These together so balance as to give a reduction of
intensity for a perfect non-absorbing crystal only by
a factor exp (—M). Thus we see that the effect of
temperature vibration is to change the structure

amplitude F of the static crystal to F exp (—M).
Since the integrated intensity of a perfect crystal is
proportional to the first power of the structure factor,
the temperature factor correcting the intensity comes
out to be only exp (—M). For an ideally mosaic
crystal where the intensity is proportional to F2 the
temperature factor becomes exp (—2M). It is possible
also to envisage intermediate types of crystals where
the temperature factor may be of the form exp (— PM)
where P may have a value between 1 and 2. This
behaviour is analogous to what is obtained in the case
of the polarization factor (K for perfect crystal and
K2 for mosaic crystal). This variation of the polariza-
tion factor has been made use of for assessing the
degree of perfection of crystals (Ramaseshan & Rama-
chandran, 1954; Chandrasekharan, 1959). It appears,
therefore, that the temperature factor also could be
used in a similar way to determine the degree of per-
fection of crystals by measuring the integrated in-
tensity at two different temperatures. The experimen-
tal difficulty is however slightly greater in this case
and also one cannot be certain that increase of tem-
perature by itself does not lead to an imperfection.
In fact, from light scattering studies, such an increase
in imperfection has been found to occur in the case
of quartz (Humphreys-Owen, 1956).

Although the theory has been developed essentially
for X-ray diffraction, it is obvious that the results can
be carried over to the diffraction of electrons and
neutrons by perfect crystals, as the dynamical theories
of these phenomena are quite similar to that of X-ray
diffraction.

The author is indebted to Prof. G. N. Ramachan-
dran for the invaluable discussions he had with him
and is grateful for the keen interest he took in this
study. His thanks are also due to the University
Grants Commission for the award of a research
scholarship which made this work possible.
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